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Abstract

Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major
hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process,
more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of
exercise and to implement effective exercise interventions for elderly people.

Introduction

The number of people aged ‡ 60 years worldwide is
expected to nearly triple by 2050, with the ‘‘oldest old’’

group ( ‡ 85 years) being the most rapidly expanding seg-
ment. A growing challenge is to maintain elderly people
independently until end of life. In them, functional inde-
pendence is directly dependent on physical fitness, i.e. ‘‘the
ability to carry out daily tasks with vigor and alertness,
without undue fatigue and with ample energy to enjoy
[leisure] pursuits and to meet unforeseen emergencies.’’1 In
turn, physical fitness is determined by several measurable
health-related phenotypes, including mainly cardiorespira-
tory fitness and muscle function.1 Among the physiological
changes associated with aging, those affecting the cardio-
respiratory and vascular system and skeletal muscles most
affect physical fitness, whereas exercise can attenuate multi-
system age declines, as explained below.

Summary of the Impact of Aging on the Main Physical
Fitness—Related Phenotypes

Aging and cardiorespiratory fitness

Maximal oxygen uptake (VO2max; sometimes referred to as
maximal aerobic capacity or simply aerobic capacity or aer-
obic endurance) is a main indicator of cardiorespiratory fitness.
There is variability among studies,2–4 but the average rate of

VO2max decline in old people is ‡ 4–5 mL$kg- 1$min - 1/
decade.5 Mostly reduced maximal cardiac output6–10 but also a
decline in maximal arteriovenous oxygen difference (a-vO2

diff) (minus *3%/decade)7,11 contribute to age reductions in
VO2max.12,13 Aging skeletal muscles have a low capacity to
use O2 due to several factors, such as decreased muscle mass
(see below),14,15 increased peripheral resistance,16 reduced
muscle capillary density,17 endothelial dysfunction,18 changes
in skeletal muscle microcirculation,19 and reduced muscle
oxidative capacity.20

Aging and muscle function

Muscle mass usually starts to decline after 25–30 years of
age,21,22 such that on average 40% of muscle mass is lost by
80 years.22,23 In turn, a quantitative loss in muscle cross-
sectional area is a major contributor to the decrease in
muscle strength seen with advancing age, i.e., after 60–70
years of age.24 The term ‘‘sarcopenia’’ was originally created
to refer to age-related loss of muscle mass with consequent
loss of strength.25 There are now four international defini-
tions of sarcopenia.26–29 In essence they all agree, requiring a
measure of impaired walking capability (either low gait
speed or a limited endurance [distance] in a 6-min walk),
together with an appendicular lean mass of less than 2
standard deviations of a sex- and ethnically-corrected nor-
mal level for individuals 20–30 years old. Sarcopenia (see
below for details on signaling pathways involved) occurs due
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to several age-related factors, such as gradual muscle dener-
vation,23,30 diminished satellite cells,31 low muscle protein
synthesis,32 low anabolic hormone levels,33 malnutrition,34

increased pro-inflammatory cytokines,35 oxidative stress,36

mitochondrial dysfunction,37–40 and physical inactivity.41

Although there are differences between studies, on average,
5%–13% and 11%–50% of people aged 60–70 years and ‡ 80
years, respectively, suffer sarcopenia,42–47 with a higher
prevalence (68%) reported in nursing home residents ‡ 70
years.48 Sarcopenia needs to be differentiated from ‘‘ca-
chexia,’’ a combination of both muscle and fat loss that is
usually attributable to an excess of catabolic cytokines asso-
ciated with a disease process, e.g., cancer.49–51 Sarcopenia is
linked with increased disability, falls, hospitalization, nursing
home admission, and mortality.48,52–54

Frailty and disability

A consequence of the aforementioned effects of aging on
cardiorespiratory and muscle fitness (especially sarcopenia),
alone or in combination with co-morbidities such as neu-
rodegeneration, is the ‘‘frailty syndrome.’’55 Although no
single operational definition of the frailty syndrome has
been agreed upon, two major definitions with proposed as-
sessment tools have predominated over the past decade—the
frailty phenotype, also known as Fried’s definition,56 and the
frailty index.57 The most widely cited is the frailty pheno-
type, which is operationalized as a syndrome meeting three
or more of the following five phenotypic criteria: Weakness
as measured by low grip strength, slowness (low walking
speed), low level of physical activity, low energy or self-
reported exhaustion, and unintentional weight loss.56 A
prefrail stage, in which one or two criteria are present,
identifies a subset at high risk of progressing to frailty. Older
individuals with none of the above five criteria are classified
as nonfrail. The frailty index was developed on the basis of a
comprehensive geriatric assessment by counting the number
of deficits accumulated, including diseases, physical and
cognitive impairments, psychosocial risk factors, and com-
mon geriatric syndromes other than frailty.57,58 Whereas the
frailty index may have clinical utility in risk assessment and
stratification, it is less clear that it adds significant value to
comprehensive geriatric assessment.59

Frailty is an important and growing problem in aging
western populations, because it potentially affects 20%–
30% of adults older than 75 years.60 For instance, the
prevalence of prefrail and frail individuals is high in the
Spanish population (41.8% and 8.4%, respectively) and in-
creases with age, according to a recent a population-based
study conducted on 2488 individuals aged 65 years and
older in a central area of the country.61 On the other hand,
frailty could eventually result in disability,62, i.e., ‘‘difficulty
or dependency in carrying out activities necessary for in-
dependent living, including roles, tasks needed for self-care
and household chores, and other activities important for a
person’s quality of life.’’63

For the above-mentioned reasons, it is of paramount medical
importance to attenuate age-related declines in physical fitness.
Yet no single drug can reverse the age-related loss of physical
fitness because none benefits all of the systems involved,
whereas regular exercise has multi-system anti-aging effects
(see below and Fig. 1, left column for a summary).

Exercise Attenuates Fitness and Multisystem
Age-Related Declines

Benefits of exercise (particularly aerobic exercise)
in cardiorespiratory fitness/cardiovascular disease

Regular exercise, particularly dynamic exercise of mod-
erate intensity ( £ 70% of VO2max or £ 80% of maximum
heart rate) involving mostly the aerobic energy pathway and
large muscle mass (e.g., brisk walking, bicycling) attenuates
age declines in cardiorespiratory fitness (see Chodzko-Zajko
et al.64 for an in-depth review and experts’ recommenda-
tions). This type of exercise, commonly referred to as
‘‘aerobic exercise’’ (or ‘‘endurance exercise’’), has a re-
storing effect on an important risk factor of cardiovascular
disease (CVD), i.e., endothelial dysfunction.65–67 It also
increases endothelial nitric oxide (NO�) production and
thus vascular tone regulation. Regular bouts of exercise-
increased laminar flow activate (through phosphorylation
via protein kinase B, Akt) endothelial NO� synthase while
attenuating NO� degradation into reactive oxygen species
(ROS) and reactive nitrogen species.68 Together with in-
creased angiogenesis (see further below), an additional
benefit of aerobic exercise in endothelial health is stimula-
tion of macrophage-mediated reverse cholesterol transport
through activation of peroxisome proliferator-activated re-
ceptor gamma (PPARc).69,70 Yet aging autonomic dys-
function has a synergistic effect together with endothelial
dysfunction in increasing CVD risk71 and raises the risk of a
leading cause of death in most industrialized countries,
sudden death due to ventricular fibrillation.72

During aging, the sympathetic nervous system (SNS)
outflow to several peripheral tissues increases to stimulate
thermogenesis and thus to prevent increasing adiposity.73

Chronically activated SNS has deleterious effects on the
cardiovascular system, i.e., reduced leg blood flow, in-
creased arterial blood pressure, impaired baroreflex function
and hypertrophy of large arteries; it can also increase insulin
resistance, thereby raising the risk of metabolic syn-
drome.74,75 Importantly, aerobic exercise training (e.g.,
brisk walking) has a beneficial, dose–response effect in at-
tenuating aging autonomic system dysfunction, with trained
elderly individuals showing similar baroreflex function
compared with their moderately active younger peers.76

Heart rate variability (HRV), a marker of autonomic func-
tion and a powerful predictor of CVD outcome (high HRV
is associated with a better prognosis), increases with aerobic
exercise training in old people.77 Reduced angiotensin II,
increased NO�, and mainly improved vagal modulation and
decreased sympathetic tone are implicated in the beneficial
exercise effects on HRV.78

Benefits of exercise (particularly resistance exercise)
in the aging muscle function

Training programs, especially if including resistance
(strength) exercises (i.e., movements, such as weightlifting
or exercises with resistance bands, performed against a
specific external force that is regularly increased during
training) are especially useful for improving muscle mass
and/or strength in the elderly,79 including in the oldest old80

(see Table 1 for a summary of controlled exercise inter-
ventions [mostly based on resistance exercises] in the oldest
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old). In general, published resistance exercise interventions
in old people had a duration ranging from 4 to 48 weeks and
were in agreement with accepted or ‘‘traditional’’ exercise
recommendations for older people,81 with the usual weekly
schedule including two to three nonconsecutive sessions
with one to three sets of 10–15 repetitions of classic
weightlifting exercises, such as leg presses.

Other interventions feasible in old people include ‘‘high-
velocity resistance training,’’ i.e., focusing on speed of
movement,82,83 or even explosive-type heavy-resistance
training, e.g., weightlifting exercises with a load equivalent

to 75%–80% of one repetition maximum (1RM) and per-
formed with maximal intentional acceleration of the training
load during the concentric movement phase.84 In general,
besides being feasible and well tolerated even by the oldest
old,84 this alternative type of intervention would elicit
similar85 or even higher improvements in functional per-
formance and disability compared with more traditional,
lower-velocity resistance training.86 Another approach is the
use of a weighted vest, which has proved effective to im-
prove perceived health in old people,87 as well as lateral
stability, lower-body muscular strength, muscular power,

FIG. 1. Summary of the main anti-aging effects of regular exercise vs. aging effects at the multi-systemic (left; see
Chodzko-Zajko et al.64 for an in-depth review) and cellular level (right; see text). AKT, protein kinase B; AMPK, AMP-
activated protein kinase; ASC, apoptosis-associated speck-like protein caspase; AUF1, AU-binding factor 1; BDNF, brain-
derived neurotrophic factor; FoxO3a, human protein encoded by the FOXO3 gene; Glut 4, glucose transporter type 4;
HATs, histone acetyltransferases; HDACs, histone deacetylases; HRV, heart rate variability; IGF-1, insulin-like growth
factor 1; IL, interleukin; jmjC, jumonji C proteins; LSD, lysine-specific histone demethylase; miR, micro-RNA; mtDNA,
mitochondrial DNA; mTOR, mammalian target of rapamycin; NK cell, natural killer cell; NLRP3, NOD-like receptor
protein 3; PBMCs, peripheral blood mononucleated cells; PDK4, pyruvate dehydrogenase kinase isoenzyme 4; PGC-1,
peroxisome proliferator-activated receptor gamma coactivator 1; PPAR-d, peroxisome proliferator-activated receptor d;
PTMs, post-translational modifications; Qmax, maximal cardiac output; ROM, range of motion; SIRT, sirtuin; TERT,
human telomerase reverse transcriptase. Color images available online at www.liebertpub.com/rej
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and leg lean mass (and thus likely to reduce risk fall) in
postmenopausal women aged 50–75 years.88 Preliminary
findings also support the potential effectiveness of including
a weighted stair climbing exercise in the training programs
of old people.89 Others, however, found no significant ben-
efits of a home-based intervention using a weighted vest.90

Benefits of exercise in the frail elderly

Although numerous studies have shown the benefits of
resistance training in old people in general, less research has
focused specifically on the frail elderly. This is an important
issue because frailty status might influence the potential
applicability and effectiveness of the different training pro-
grams. For instance, Faber et al. found that fall-preventive,
moderate-intensity, group exercise programs (mostly based
on walking and balance exercises) had positive effects on fall
risk and physical performance in pre-frail but not in frail
elderly (mean age 85 years).91

Fiatarone et al. reported that physically frail, oldest old
men and women improved their leg muscle strength out-
comes by 220% after a 10-week strength training program
(three sets of eight repetitions at 80% of 1RM, three times a
week).80 Serra-Serra-Rexach et al. found an increment of
17% in the leg press strength of nonagenarians after 8 weeks
of progressive strength training with lower loads (two to
three sets of eight to 10 repetitions at 30% of 1RM in the
initial phase progressing to 70% of 1RM at the end of the
intervention).92 Lustosa et al. found significant improve-
ments in the knee extensor muscle power of pre-frail elderly
women after 12 weeks of strength exercises of the lower
extremities at 70% of 1RM, three times a week.93 Although
more research is needed, higher-intensity exercises seem to
elicit higher gains. Thus, Sullivan et al.94 found greater in-
creases in the muscle strength of frail elderly after a 12-
week resistance training program of progressive intensity
(starting at 20% and ending at 80% of 1RM) compared with
a continuous, lower intensity protocol (20% of 1RM during
the entire 12-week period).

The American College of Sports Medicine recommends a
multi-component (strength, endurance, flexibility, and bal-
ance) exercise program to maintain physical fitness in old
adults.95 Villareal et al. studied the effect of such a multi-
component exercise program on physical fitness in frail,
obese older adults during 3 months, finding beneficial ef-
fects on muscle mass and physical function.96 Lord et al.
found significant improvements in choice stepping reaction
time test, 6-min walking distance, and simple reaction time
requiring a hand press, after training (aerobic exercises,
specific strengthening exercises, and activities for balance,
hand-eye and foot-eye coordination, and flexibility) during
12 months in frail older people living in retirement vil-
lages.97 Eshani et al.98 assessed the effect of a 6-month
aerobic training program on frail elderly (consisting of
walking at 70%–75% of maximal heart rate during 20 min at
the initial phase and progressing to 60 min at the end of the
program) and found a 14% of increase in VO2max.

Evidence on the benefits of exercise interventions in el-
derly with frailty, co-morbidities, and subsequent physical
disability comes from a recent meta-analysis by deVries
et al.99 This study included data on 18 randomized con-
trolled trials (2,580 participants in total) of physical training

interventions in community-dwelling adults aged 60–85
years who were physically frail and/or had physical dis-
ability and/or multi-morbidity. Half of the included studies
used multi-component training programs, and intervention
duration ranged from 5 weeks to 18 months. There were
statistically significant benefits with physical exercise ther-
apy compared to no exercise in mobility and physical
functioning. There were no differences in effectiveness with
regard to the duration of the program (short vs. longer in-
terventions), whereas high-intensity programs elicited
greater gains compared to low-intensity ones. The inter-
ventions that showed the largest effect sizes were those
using resistance training components.

Benefits of exercise (particularly, resistance exercise)
in the aging muscle tissue—main signaling pathways
involved in exercise adaptations

The molecular mechanisms involved in the activation of
signal transduction cascades regulating the adaptations to
exercise are dependent on specific signaling pathways ac-
tivated or repressed by numerous stimuli such as alterations
in metabolites concentrations, adenosine triphosphate
(ATP)-to-adenosine diphosphate (ADP) ratio, calcium flux,
intracellular pH, redox balance, ROS production, and in-
tracellular oxygen pressure.100–103 Post-exercise changes in
gene transcription involve immediate early genes, myogenic
regulators, genes that regulate carbohydrate metabolism and
lipid mobilization, transport and oxidation, mitochondrial
metabolism, and oxidative phosphorylation, as well as
transcriptional regulators of gene expression and mito-
chondrial biogenesis,104–107 or alterations in the DNA-
binding activity of a variety of transcription factors, such as
myocyte enhancer factor 2 (MEF2),107 histone deacetylases
(HDACs),108 and nuclear respiratory factors (NRFs).109,110

The most relevant signaling pathways modulated by ex-
ercise include calcium/calmodulin-dependent protein kinase
(CaMKs) signaling, mitogen-activated protein kinases
(MAPKs) signaling, ATP turnover and adenosine mono-
phosphate (AMP)-activated protein kinase (AMPK) signal-
ing, oxidized nicotinamide adenine dinucleotide (NAD + )/
reduced nicotinamide adenine dinucleotide (NADH) ratio
and sirtuins (SIRTs), activation of mammalian target of ra-
pamycin (mTOR), oxygen sensing and the hypoxia-inducible
factor 1 (HIF-1), mitochondrial biogenesis pathway, and the
PPARc co-activator-1a (PGC-1a) and - 1b(PGC-1b).111

Accordingly, several important adaptations in skeletal mus-
cle, such as mitochondrial biogenesis, anti-oxidant defense,
hypertrophy, cytoprotection, and fiber transformation, are
regulated primarily by these pathways. Below we summarize
the main biological mechanisms and pathways through
which exercise may attenuate sarcopenia (see also Fig. 2).

Calcium is implicated in the regulation of numerous in-
tracellular proteins, such as protein kinase C, calcineurin,
and CaMKs that mediate cellular signal transduction.112

Exercise increases CaMKII phosphorylation in an intensity-
dependent manner. CaMKs and calcium signaling affect
glucose transport,113 lipid uptake and oxidation,114 and
skeletal muscle plasticity.115 In addition, the transcription
factors cyclic AMP response element-binding protein
(CREB), MEF2, and HDACs are CaMK targets involved in
the regulation of skeletal muscle gene expression. Exercise
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also stimulates MAPK-related pathways, including extra-
cellular signal-regulated kinase 1 and 2 (ERK1/2),116

p38,117 and c-Jun NH2-terminal kinase ( JNK).116 For in-
stance, p38 MAPK can stimulate upstream transcription
factors of the PGC-1a gene through skeletal muscle con-
traction.118 Moreover, MAPKs regulate a wide range of
physiological processes, such as differentiation, hypertro-
phy, inflammation, and gene expression.119

The role of ROS in the exercise-induced adaptations of
skeletal muscles has been studied extensively, particularly
with regard to aerobic exercise.120,121 Contracting skeletal
muscles produce ROS, activating MAPK signaling and
transcription factor nuclear factor-kappa B (NF-jB), thereby
linking signal transduction to transcriptional processes.122

Acute exercise activates JNK signaling in a ROS-dependent
manner, as evidenced by attenuated JNK signaling during
exercise with infusion of the anti-oxidant N-acetylcysteine.123

Contraction-induced increases in interleukin-6 (IL-6) secre-

tion, an exercise-associated cytokine with potent multi-organ
metabolic effects124 (see further below), is JNK dependent,125

which attests to the likely importance of JNK signaling in
mediating metabolic adaptations to exercise. AMPK is a
serine/threonine kinase that modulates cellular metabolism
acutely through phosphorylation of metabolic enzymes126

and, over time, via transcriptional regulation.127,128 Given
the rate of ATP turnover during muscle contraction, AMPK
acts as a signal transducer for metabolic adaptations by
responding to an altered cellular energy status. Overall,
AMPK activation preserves ATP by inhibiting both bio-
synthetic and anabolic pathways, while simultaneously
stimulating catabolic pathways to re-establish cellular en-
ergy stores.129 Chronic AMPK activation modifies meta-
bolic gene expression and stimulates mitochondrial
biogenesis,127 partly via AMPK-induced modulation of the
DNA-binding activity of transcription factors, including
NRF-1, MEF2, and HDACs.127,130

FIG. 2. Main signaling pathways involved in the exercise effects in the skeletal muscle tissue. 4E-BP1, eukaryotic
translation initiation factor 4E (eIF4E) binding protein; AKT, protein kinase B; AMP, adenosine monophosphate; AMPK,
AMP activated protein kinase; ATF2, activating transcription factor 2; ATP, adenosine triphosphate; CaMKII, calmodulin-
dependent protein kinase II; CREB, cAMP response-element-binding protein; ERK1/2, extracellular signal-regulated kinase
1 and 2; FAK, focal adhesion kinase; FoxO1, human protein encoded by the FOXO gene; FOXOs, Forkhead box-O
transcription factors; HDACs, histone deacetylases; HIF, hypoxia-inducible factor; JNK, c-Jun NH2-terminal kinase;
MAFbx, or Atrogin-1; MuRF-1, muscle RING-finger protein-1; mTOR, mammalian target of rapamycin; mTORC1, mTOR
complex 1; NAD, nicotinamide adenine dinucleotide; PA, phosphatidic acid; p70S6K, ribosomal protein S6K; PDH, prolyl
hydroxylase; PGC-1a, peroxisome proliferator-activated receptor-c coactivator-1a; PI13K, phosphatidylinositol 3-kinase;
Rheb, Ras homolog enriched in brain gene; ROS, reactive oxygen species; SIRT, sirtuin; Tsc1, tuberous sclerosis complex
1; Tsc2, tuberous sclerosis complex 2. Color images available online at www.liebertpub.com/rej
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Sestrins are a recently discovered hallmark of aging sar-
copenia. Mammalian cells express sestrins in response to
stress including DNA damage, oxidative stress, and hyp-
oxia. Sestrins can inhibit the activity of the mTOR complex
1 (mTORC1) through activation of AMPK.131 Sestrins
prevent sarcopenia, insulin resistance, diabetes, and obesity.
They also extend life span and health span through activa-
tion of AMPK, suppression of mTORC1, and stimulation of
autophagic signaling.131 Recently, we proposed a possible
role of the AMPK-modulating functions of sestrins in the
benefits produced by exercise in older subjects.132

The regulation of the SIRT family of protein deacetylases
is NAD + dependent.133 Both deacetylases SIRT1 and
SIRT3 respond to elevations in [NAD + ] and the NAD + /
NADH ratio. Increased SIRT activity is associated with
positive adaptations in skeletal muscle metabolism, includ-
ing improved mitochondrial function and exercise perfor-
mance.134,135 Likewise, the adaptive muscle growth
consequent to mechanical loads induced by resistance ex-
ercise is largely determined by the enhanced skeletal muscle
protein synthesis due to the activation of mTOR, ribosomal
protein S6K (p70S6K), and downstream targets.136 p70S6K
is a major regulator of muscle protein synthesis through
pathways of protein translation and ribosome biogenesis
involving eukaryotic translation initiation factor 4E (eIF4E),
4E binding protein 1 (4E-BP1), and elongation factor 2
(eEF2). Phosphorylation of 4E-BP1 by mTOR suppresses
binding and inhibition of eIF4E by 4E-BP1. Phosphoryla-
tion of S6K leads to the phosphorylation of the 40S ribo-
somal protein S6 (rpS6) and eukaryotic translation initiation
factor 4B (eIF4B). Collectively these events lead to the
formation of the translation initiation complex and activate
protein synthesis inducing cellular hypertrophy.137 Me-
chanosensory regulation of muscle protein synthesis also
involves other signaling proteins, such as focal adhesion
kinases (FAK), a class of transmembrane receptors that act
as protein tyrosine kinases. FAK proteins are pivotal points
for the transmission of contractile force throughout the
skeletal muscle structure and a central component of in-
tegrin signaling. The grade of expression and activity of
FAK in skeletal muscle is loading dependent,138,139 and
contraction results in conformational modifications and ac-
tivation of FAK phosphotransferase,138,140 which can trig-
ger muscle protein synthesis through mTOR-dependent or
-independent mechanisms.141

Oxygen sensing is also involved in the adaptations of
skeletal muscle fibers to exercise, particularly aerobic ex-
ercise. Hypoxia-inducible factor (HIF), a heterodimeric
transcription factor composed of two subunits (HIF-1a and
HIF-1b), regulates the major signal transduction pathway
sensitive to the intracellular partial pressure of oxygen.
Activation of HIF-1 by many stimuli, including aerobic
exercise, induces transcription of target genes involved in
erythropoiesis, angiogenesis, glycolysis, and energy me-
tabolism.105,142,143

Exercise benefits in neurodegeneration—main
signaling pathways involved

Physical exercise produces important benefits in several
neurodegenerative diseases.144,145 Here we focus on the ef-
fects of exercise in Alzheimer’s disease, which comprises per

se 50%–56% of all causes of aging dementia (an additional
13%–17% is caused by Alzheimer’s disease combined with
vascular diseases).146 Exercise, especially aerobic exercise, is
beneficial for patients with Alzheimer’s disease,147 not only
because it attenuates patients’ physical and psychosocial de-
pendence148 but it also because it improves several features of
the pathophysiology of this disorder,149,150 including oxidative
stress regulation, autophagy systems, neurotrophic signaling,
mitochondrial biogenesis, angiogenesis, neurogenesis, and the
modulation of specific amyloid-b (Ab)-degrading enzymes
(see Table 2 for a summary of intervention studies in humans
and Fig. 3 for a summary of the putative molecular pathways
involved).149,150

Oxidative stress plays an important role in the etiology of
Alzheimer’s disease.151–154 The brain is especially sensitive
to oxidative stress compared to other organs owing to its high
metabolic rate (i.e., high O2 consumption) together with its
relatively low anti-oxidant defense capacity and its high
levels of polyunsaturated fatty acids and metals.151,155 Ele-
vated levels of brain oxidative stress are found with normal
aging,156,157 and this phenomenon is exacerbated in Alzhei-
mer’s disease due to additional sources of ROS such as Ab
accumulation and mitochondrial dysfunction.151,153,154,158

Although there is some controversy, aerobic exercise en-
hances anti-oxidant defense and mitigates oxidative damage
in the brain of rodent models.150 Thus, exercise increases
glutathione peroxidase (GPx) activity in whole brain,159 as
well as superoxide dismutase (SOD) and GPx activity in the
brainstem and corpus striatum.160 Using a triple transgenic
mouse model of Alzheimer’s disease, we recently showed
that aerobic exercise training can increase hippocampal cat-
alase mRNA levels.161

Exercise attenuates aging neurodegeneration partly by up-
regulating neurotrophic factors, such as the brain-derived
neurotrophic factor (BDNF).162,163 Circulating BDNF levels
increase with aerobic exercise, especially when intensity is
high.164–166 Exercise-produced BDNF can help maintain
brain function and promote neuroplasticity167,168 as well as
repairing motor neurons.169 Increased BDNF transcripts in
exercised rodents’ brains are well documented, which pro-
vides a biological explanation for the beneficial effect that
exercise has in cognitive function, with tropomyosin receptor
kinase (trkB), CREB, or synapsin I signaling been in-
volved.170 These pathways are involved in synaptogenesis171

and long-term memory formation.172 Furthermore, the acti-
vation of the transcription factor CREB leads to induction of
several genes that regulate neurotrophic effects, including
those encoding PGC-1a,173 dynorphin, and BDNF.174 In ad-
dition, when the exercise induction of the BDNF pathway is
blocked, aerobic exercise is unable to activate CREB and
stimulate cognition.170,175 The hippocampal regulation of
BDNF induced by exercise is mediated by neurotransmit-
ters,167,176 neuroendocrine mechanisms,167 and insulin-like
growth factor 1 (IGF-1) modulation.177,178 Thus, hippocam-
pal IGF-1 levels increase with exercise training177 and have
neurotrophic effects because IGF-1 activates BDNF signal-
ing177 and increases trkB levels.179 Aerobic exercise induces
other neurotrophic factors, such as vascular endothelial
growth factor (VEGF),180 nerve growth factor (NGF),181

glial-derived neurotrophic factor (GDNF),182 neurotrophin
(NT)-3,183 and NT-4/5,184 all of which act synergistically to
induce neurogenesis and neuroplasticity.167,180
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Although neurons are post-mitotic cells, neurogenesis can
still occur in specific areas of the adult hippocampus185 with
some stimuli such as ischemia/reperfusion, aging, metabolic
pathology, or physical exercise being able to change the rate
of neurogenesis.150 Van Praag and collaborators have ex-
tensively studied the effects of exercise, particularly of the
aerobic type, on adult neurogenesis186 and have demon-
strated that the newly formed neurons are associated with
the cognitive and synaptic effects induced by exercise.187

This phenomenon is especially important in age-related
neurodegeneration because attenuation of accelerated neu-
ronal loss can prevent several age-related disorders, in-
cluding Alzheimer’s disease. Several signaling pathways
induced by aerobic exercise have been suggested to mediate
this process such as BDNF,188,189 VEGF,180 and IGF-1.190

Both age and disease-induced neurodegeneration are par-
tially produced by a dysregulation of protein homeostasis
(see further below on the exercise effects in aging ‘‘pro-
teostasis’’). Aerobic exercise increases proteolytic degrada-
tion by proteasomes and neprilysin, a specific Ab-degrading
enzyme.167,191 Activation of the brain proteasome is impor-

tant in preventing Alzheimer’s disease because proteasome
inhibition produces Ab accumulation, a hallmark of this
disorder.192 The neurofibrillary tangles produced by an ac-
cumulation of hyperphosphorylated tau proteins is also an
important hallmark of Alzheimer’s disease. Lysine residues
of tau are susceptible to ubiquitination, indicating interaction
of tau aggregation by oligomerization and ubiquitination-
mediated degradation through the proteasome system.193 The
proteasome might also be involved in the learning process,
because its inhibition in the hippocampus blocks long-term
memory.194–195

Exercise and the Cellular Hallmarks of Aging

In a recent state-of-the-art review, López-Otı́n et al.196

nicely postulated nine hallmarks of aging that might be tar-
geted in future pharmacological interventions—genomic in-
stability, telomere attrition, epigenetic alterations, loss of
protein homeostasis (proteostasis), deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem
cell exhaustion, and altered intercellular communication.

FIG. 3. Main signaling pathways involved in the exercise effects in neurodegeneration, especially with regard to Alz-
heimer’s disease. 4-HNE, 4-hydroxynonenal; 8-OHdG, 8-hydroxy-2¢-deoxyguanosine; Ab, amyloid-pb; BACE, b-secre-
tase; BDNF, brain-derived-neurotrophic factor; IGF-1, insulin-like growth factor 1; LTP, long-term potentiation; MDA,
malondialdehyde; RCD, reactive carbonyl derivative; ROS, reactive oxygen species; VEGF, vascular endothelial growth
factor. Color images available online at www.liebertpub.com/rej
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Although more research is needed, exercise, which is avail-
able at low cost and largely free of adverse effects,111 can
influence, at least partly, most of these hallmarks (see Fig. 1,
right column, for a summary).

Genomic instability

A 5-month aerobic exercise program prevented mito-
chondrial DNA (mtDNA) instability in multiple tissues of
mtDNA mutator (progeroid) mice, thereby reducing multi-
system pathology and preventing premature mortality.197

Oxidative damage to DNA occurs during the aging pro-
cess.198 Resistance exercise decreases such damage in old
people, as indicated by 8-hydroxy-2¢-deoxyguanosine (8-
OHdG) determination, through stimulation of endogenous
anti-oxidant defense,199 whereas in rodent models aerobic
exercise improves DNA repair mechanisms (e.g., proteasome
complex),200 as well as NF-jB and PGC-1a signaling.121,201

Telomere attrition and telomerase activity

Accelerated telomere shortening is linked with numerous
age-related chronic diseases and risk factors.202–210 On the
other hand, there is increasing evidence supporting an asso-
ciation between habitual physical exercise, particularly aer-
obic exercise, and longer leukocyte telomere length.211–217

Leukocyte telomere length is also positively associated with
cardiorespiratory fitness (expressed as VO2max),213,218,219

which, in turn, is associated with lower CVD and all-cause
mortality.220 Long-term aerobic exercise can modulate leu-
kocyte telomere length as well as the network of proteins that
interact with telomeres, through activation and induction of
telomerase enzyme activity (mediated by human telomerase
reverse transcriptase [TERT]) and the shelterin complex
(or telosome).217 In effect, TERT mRNA expression is up-
regulated in leukocytes after exercise.221 Exercise also regu-
lates the microRNAs (miRNAs) that control the downstream
expression of genes involved in telomere homeostasis.221 The
association between physical exercise and telomere length
could also be due to lower oxidative stress and inflammation,
exercise-induced regulation of telomeric genes, or a complex
interplay between these processes.221,222 The effects of ex-
ercise on skeletal muscle tissue telomeres have been less
studied compared with leukocytes, and the results are less
conclusive.223,224

Epigenetic adaptations

The relationship between epigenetics regulation (e.g.,
DNA methylation) and aging is complex and controversial,
i.e., hypomethylation or hypermethylation might be either
beneficial or detrimental depending on the different cell
types; and, whether manipulations of histone-modifying
enzymes can influence aging through purely epigenetic
mechanisms remains to be clarified.196 While keeping in
mind the above-mentioned controversy, exercise seems to
induce epigenetic modifications that can help attenuate age-
deregulations,225 and several mechanisms, such as meta-
bolic adaptations and transient hypoxia conditions, have
been proposed recently.226 Regular aerobic exercise can
modify genome-wide DNA methylation in humans.227 An-
imal216,228,229 and human research216 suggests that aerobic
exercise induces, through epigenetic mechanisms, telomer-

ase activity and the transcription of genes encoding telo-
mere-stabilizing proteins. Both resistance and aerobic
exercise can increase DNA methylation, cause histone
modifications, and induce miRNAs in a wide range of tis-
sues, including among others, muscle, brain, and cardio-
vascular system.225,226 Transient DNA hypomethylation of
gene-specific promoter regions precedes increases in mRNA
expression in response to acute exercise.230 In turn, these
pulses of elevated mRNA during recovery from acute ex-
ercise facilitate protein synthesis and induce gradual struc-
tural remodeling and long-term functional adjustments.231

In general, these adaptations are intrinsic to the working
skeletal muscle and collectively contribute to maximize
substrate delivery, mitochondrial respiratory capacity, and
contractile function during exercise. The net effect is pro-
motion of optimal performance during a future exercise
challenge, resulting in a robust defense of homeostasis in the
face of metabolic perturbation and, consequently, enhanced
resistance to fatigue.232,233 Several epigenetic mechanisms,
including histone H4 deacetylation and loss of promoter
methylation, have been implicated in the modified gene
expression profile that occurs as an adaptation to aerobic
exercise.234

Epigenetic mechanisms are not restricted to early stages
of human development but are broad dynamic controllers of
genomic plasticity in response to environmental factors such
as exercise.235 For instance, in young adults, the class II
HDACs 4 and 5 (transcriptional repressors) can translocate
from the nucleus to the sarcoplasm of muscle fibers in re-
sponse to aerobic exercise.108 Over-expression of HDAC5
in transgenic mice blocks the effects of exercise training,
further suggesting a contribution of histone modifications in
the transcriptomic response to muscle contraction.236 In
human and mouse muscles, methylation of PGC-1a, mito-
chondrial transcription factor (TFAM), MEF2A, citrate
synthase (CS), and pyruvate dehydrogenase kinase isozyme
4 (PDK4) gene promoters decreases after an acute bout of
aerobic exercise.230 The degree of DNA methylation of a
large number of genes changes in response to exercise in
both skeletal muscles and adipose tissue.237,238 In addition,
aerobic exercise-induced SIRT-1 regulates the tumor sup-
pressor p53, PGC-1a, NF-jB as well as other transcription
factors via its deacetylase activity.225,239

Chronic moderate aerobic exercise increases the methyla-
tion levels of the pro-inflammatory apoptosis-associated
speck-like protein caspase (ASC) gene, which modulates IL-1b
and IL-18 in the leukocytes of old people, thereby contributing
to attenuation of age-related increases in pro-inflammatory
cytokines.240 Aerobic exercise training also alters DNA
methylation in a chronic manner.241 Thus, 48 hr after a bout of
aerobic exercise, the DNA methylation profile of genes in-
volved in diverse metabolic pathways, as well as in calcium
and insulin signaling, was recently found to be differentially
methylated in skeletal muscle.241 A majority of the detected
genes in this study were chronically hypomethylated after
exercise training. Both aerobic and resistance exercise also can
help combating aging sarcopenia and frailty by modulating,
through epigenetic mechanisms, several myogenic regulatory
factors, e.g., myogenin, myoblast determination protein 1
(MyoD), or myogenic factors 5 (Myf5) and 6 (Myf6, also
known as myogenic regulatory factor 4 [Mrf4] or hercu-
lin).242–244 Exercise also helps to attenuate the aging-related
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epigenetic deregulation of growth factors in neurodegenerative
diseases, not only by up-regulating BDNF induction as men-
tioned above, but also by promoting remodeling of the chro-
matin containing the BDNF gene.245

Overall, the study of exercise-induced epigenetic modi-
fications is just in its infancy. Yet the studies available have
already provided new insights into the potential tissue-
specific alterations in DNA methylation induced by exercise
and into some of the mechanisms explaining the beneficial
effects of regular exercise.

Loss of proteostasis

Proteostasis is defined as the protein homeostasis that is
responsible for refolding or degrading altered proteins by
several mechanisms, such as autophagy, proteasomal deg-
radation, or chaperone-mediated folding. A loss of function
in these processes leads to an aggregation of damaged
proteins and thereby proteotoxic effects that have been as-
sociated with aging196,246 and age-related conditions such as
Alzheimer’s or Parkinson’s disease.247

The autophagy–lysosomal and the ubiquitin–proteasome
systems, two important proteostatic mechanisms, are im-
paired by aging.248,249 Exercise has a beneficial effect in
autophagy.250 In aging mouse models, aerobic exercise in-
duces autophagy in: (1) The brain, supporting its potential to
promote elimination of damaging proteins causing neuro-
degeneration251; (2) heart252; or (3) muscle (besides pre-
venting apoptosis), by modulating IGF-1, Akt/mTOR, and
Akt/Forkhead box O3A (FoxO3a) signaling, thereby pre-
venting loss of muscle mass/strength.253,254 Although data
are still scarce in aging humans, autophagy muscle markers
are up-regulated after combined exercise training (walking
and moderate-intensity leg resistance exercises) in old
women.255

Aerobic exercise induces autophagy in mice through ac-
tivation of the BCL-2–beclin-1 complex,256 whereas beclin-
1 disruption in transgenic mice reduces autophagy leading to
neurodegeneration.257 Moreover, the aging human brain
shows a down-regulation of beclin-1,258 whereas healthy
centenarians have higher serum levels of beclin-1 compared
with young controls, suggesting that elevated basal levels of
autophagy may be related to healthy human exceptional
longevity.259 MacKenzie et al. showed that acute high-
resistance exercise evoked increased muscle protein syn-
thesis and decreased protein degradation in rats, through
activation of the class 3 phosphatidylinositol 3OH-kinase
(PI3K) Vps34 mVps34,260 which is known to regulate au-
tophagy by forming a complex with beclin-1.261 Using an
atrogin-1 (also known as MAFbx) knockout mouse model,
Zaglia et al. demonstrated that autophagy dysfunction pro-
motes cardiomyopathy and premature death.262 Atrogin-1 is
a muscle-specific ubiquitin ligase involved in muscle atro-
phy through FoxO signaling.263 Similar to skeletal muscle,
atrogin-1 up-regulation in the heart leads to atrophy.264 In-
terestingly, aged atrogin-1 knockout mice have reduced
tolerance to treadmill exercise and shortened life span
compared with age-matched controls.262 In this animal
model, muscle age-related increases in oxidative damage
and apoptosis are attenuated by regular aerobic exercise,
whereas both mechanisms are negatively correlated with
autophagy.261

Deregulated nutrient sensing

Exercise exerts protective effects against age declines in
the glucose-sensing somatotrophic axis,265 and also acti-
vates at the muscle level the three main interconnected
nutrient-sensing systems, i.e., the amino acid–sensing
mTOR pathway266,267 and the low energy–sensing AMPK
and SIRT pathways,132,268 thereby promoting a beneficial
muscle anabolic state. On the other hand, exercise improves
insulin sensitivity through increased production of the glu-
cose transporter type 4 (Glut 4).269

In addition, resistance exercise acutely increases the cir-
culating levels of testosterone, growth hormone (GH), and
IGF-1, with the magnitude of the effect usually increasing
with higher exercise intensity270 or duration,271 shorter rest
intervals,272 and higher exercising muscle mass.273,274 Thus,
resistance exercise is a useful approach to prevent sarcopenia
by virtue of its ability to increase protein synthesis275–277 and
skeletal muscle mass.278,279 However, the rate of muscle
protein synthesis in response to exercise training is lower in
the elderly than in younger people,280,281 leading to a lower
capacity to improve skeletal muscle strength and fiber
size.282 On the other hand, supplementation with essential
amino acids together with resistance training increases
muscle protein synthesis both in young and old individuals,
although such an effect is also attenuated in the latter, owing,
at least partly, to lower ERK1/2 and mTOR signaling.280

(For a more extensive description about nutrient-sensing
modulation by exercise, see above.)

Mitochondrial dysfunction

mtDNA mutations (typically deletions) accumulate with
age in different tissues,283,284 including mainly the nervous
and skeletal muscle tissue.37,285 Mutations in muscle
mtDNA play a causal role in the physiological mechanisms
implicated in sarcopenia,37–40 particularly in abnormalities
of the electron transport system, muscle fiber atrophy, and
breakage.37,39,40 Despite classic studies demonstrating ex-
ercise-induced mitochondrial biogenesis in young but not in
aged mice,286 recent findings have shown that aerobic ex-
ercise training attenuates mitochondrial dysfunction and loss
of mitochondrial content in the aging human skeletal muscle
while increasing oxidative capacity and the activity of dif-
ferent electron transport chain protein complexes.287

The accumulated damage to the mitochondria due to the
ROS generated from the electron transport chain is the base
of the mitochondrial theory of aging first proposed by
Harman.288 Oxidative damage to mtDNA increases with
aging, affecting mtDNA replication and transcription,
which, in turn, alters the functionality of mitochondrial
proteins.289,290 Lanza et al. demonstrated that age-related
decline in mitochondrial oxidative capacity was absent in
endurance-trained humans, who showed elevated expression
of mitochondrial proteins, mtDNA, and mitochondrial
transcription factors.291 In mtDNA mutator mice, aerobic
exercise promoted systemic mitochondrial biogenesis, pre-
vented mtDNA depletion and mutations, increased mito-
chondrial oxidative capacity and respiratory chain assembly,
restored mitochondrial morphology, and blunted pathologi-
cal levels of apoptosis in multiple tissues. Thus, the authors
concluded that a systemic ‘‘mitochondrial rejuvenation’’
occurred as a result of the training program.197
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The lower mitochondrial enzyme activity commonly
shown in older compared with younger adults17,292 is as-
sociated with a down-regulation of the mRNAs encoding
mitochondrial proteins in skeletal muscle.293–295 Aged
subjects have cytochrome c oxidase (COX)-deficient muscle
fibers,296 especially in sarcopenic muscles or in those focal
regions with higher content of mtDNA mutations.39,296–299

Yet resistance exercise training can reverse the muscle
transcriptional signature of aging back to that of younger
levels for most genes involved in mitochondrial function.299

Gomes et al.300 recently provided novel insights into the
mechanisms responsible for the age decline of mitochon-
drial homeostasis by elegantly showing a regulatory path-
way that is SIRT1-mediated and independent of PGC-1a
and -b, with aging declining NAD + levels and thereby re-
ducing SIRT1 activity and leading to impaired oxidative
phosphorylation (OXPHOS). Short treatment (1 week, or
*8 months, when translated to the human life span) of 22-
month-old mice with nicotinamide mononucleotide (NMN)
(a precursor to NAD + increasing NAD + levels in vivo)
reversed several biochemical indicators of muscle mito-
chondrial senescence, with increased OXPHOS transcripts
in the gastrocnemius muscle. It was proposed that NMN or
other compounds able to increase NAD + are candidates to
be included in the human anti-aging armamentarium. And
yet NMN, as opposed to exercise, was unable to reverse
other age-dependent whole-organism effects, such as loss of
muscle strength.

Besides the above-mentioned benefits of resistance ex-
ercise on muscle strength until end of life (which were
summarized in Table 1), regular exercise has a profound
beneficial effect on human mitochondrial function/biogen-
esis,301 with this effect being both PGC-1 and SIRT medi-
ated.111 An active lifestyle attenuates aging mitochondrial
dysfunction, promoting longevity through pathways com-
mon to the effects of caloric restriction.291 In addition, some
‘‘myokines’’ (see further below for the definition of myo-
kine) have a mitochondrial rejuvenating effect, e.g., visfatin,
a NAD + biosynthetic enzyme that stimulates the SIRT-1
pathway.252

Cellular senescence

Cellular senescence is defined as a stable arrest of the
cell cycle coupled with stereotyped phenotypic changes,
and its regulation during aging is a complex process. In-
deed, the same phenomenon, i.e., elimination of senescent
cells, that is beneficial to delay age-related pathologies
and thus to promote longevity, could also stimulate can-
cer development.196 Besides inducing secretion of anti-
tumorigenic myokines such as secreted protein acidic and
rich in cysteine (SPARC, also known as basement mem-
brane protein [BM]-40), calprotectin, or leukemia inhibi-
tory factor,302 exercise, mainly aerobic exercise, may
decrease cancer incidence and help improve cancer prog-
nosis through several mechanisms, including greater natu-
ral killer (NK) cell activity, enhanced antigen presentation,
reduced inflammation, and prevention of functional se-
nescent cells’ accumulation.303 Telomere-associated pro-
teins regulate cellular senescence and, as described above,
are up-regulated by exercise. Moreover, aerobic exercise
increases the aortic expression of telomere repeat-binding

factor 2 and Ku70 and reduces the expression of apopto-
sis regulators, such as cell-cycle-checkpoint kinase 2,
p16INK4a, and p53 or survival regulators.216

Telomere-associated proteins, as well as p16INK4a/Rb and
p19ARF/p53 signaling, are considered main pathways in the
control of human aging and age-associated pathologies.196

p16INK4a and p21 are cell cycle inhibitors that are up-reg-
ulated in senescent cells.304,305 p21 is a downstream target
of p53 and telomere dysfunction, whereas p16INK4a appears
to be up-regulated in a p53- and telomere-independent
manner.306 Sousa-Victor et al. recently highlighted the im-
portance of p16INK4a in the modulation of cellular senes-
cence. In a geriatric mouse model, muscle satellite cells lose
their quiescent state owing to deregulation of p16INK4a,
whereas repressing p16INK4a restores muscle regenerative
capacity.307 Thus, we suggested the importance of p16INK4a

modulation as a new target for combating aging-related
chronic diseases.308 Lifestyle factors, including smoking
and physical aerobic exercise practice, have been associated
with p16INK4a mRNA levels in peripheral blood T ympho-
cytes,309 a biomarker of human aging.310 Thus, physical
exercise is inversely correlated with p16INK4a mRNA levels,
i.e., higher amounts of physical exercise leads to down-
regulation of p16INK4a in blood cells, which might promote
protective effects against age-dependent alterations.309

As exposed above, cellular senescence plays a key role
not only in cancer development311,312 but also in aging.313

In fact, cell senescence is one of the major paradigms of
aging research through the acquisition of the senescence-
associated secretory phenotype (SASP) or senescence-
messaging secretome.314 SASP is a DNA damage response,
which, through production of inflammatory, growth-
promoting, and remodeling factors can potentially explain
how senescent cells alter tissue microenvironments.315

Different animal model investigations have shown that ex-
ercise modulates senescence associated to aging. Thus, 12
weeks of aerobic (swimming) exercise training suppressed
liver senescence markers and down-regulated inflammatory
mediators by reducing gamma glutamyltranspeptidase ac-
tivity and levels of p53, p21, and IL-6 in a d-galactose–
induced senescence rat model.316 Werner et al.228 studied
the effect of aerobic exercise on telomere-regulating
and cellular senescence mechanisms at the cardiac level in
wild-type, endothelial NO� synthase (eNOS)-deficient and
TERT-deficient mice models. Their results showed that
exercise up-regulated cardiac telomere-stabilizing proteins,
promoted anti-senescent effects, and provided protection
against doxorubicin-induced cardiomyopathy. Werner
et al.216 also studied the effects of aerobic exercise on
vascular telomere biology and endothelial apoptosis in mice
and the effects of long-term aerobic training on telomere
biology in circulating leukocytes in humans. Besides im-
proving telomere biology in the thoracic aorta and in
mononuclear cells, exercise reduced the vascular expression
of apoptosis regulators. Moreover, endurance athletes had
increased telomerase activity and down-regulated cell cycle
inhibitors compared with sedentary subjects. These findings
are supported by Song et al.,309 who found that in humans
aerobic exercise reduced the expression of DNA damage
biomarkers and correlated positively with p16INK4a expres-
sion and negatively with telomere length in peripheral blood
T lymphocytes.
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Stem cell exhaustion

The decline in the regenerative potential of tissues is a
main characteristic of aging, whereas exercise is one of the
most potent stimuli for the proliferation/migration of the
different adult stem cell subsets from their home tissue (e.g.,
bone marrow) to target damaged tissues for subsequent
engraftment and regeneration.252 Thus, regular exercise at-
tenuates age-associated reduction in the endothelium-
reparative capacity of endothelial progenitor cells.317

Exercise activates mesenchymal stem cells, which are plu-
ripotent progenitors with a wide variety of therapeutic po-
tential (e.g., as vehicles of anti-cancer genes) and promotes
proliferation of neural stem cells, thereby contributing to
improve brain regenerative capacity and cognitive ability.252

Arguably the most affected stem cell type during aging is
the myogenic one, known as satellite cells.318 Although the
human skeletal muscle tissue maintains myofiber replace-
ment and repair potential throughout most of life, the effi-
ciency of this process declines with aging, owing to satellite
cell alterations. Age-reduced number or functionality of
these myogenic cells prevents proper maintenance of muscle
mass.318–321 Specifically, aging atrophy of type II muscle
fibers is accompanied by a specific decline in the content of
type II muscle fiber satellite cells.318 Thus, since sarcopenia
is associated with atrophy of type II muscle fibers, its
pathophysiological mechanisms are closely related with the
decline in satellite cell content with aging.31 Both aging
reductions in muscle mass and strength are positively cor-
related with muscle fiber type specific cross-sectional area,
myonuclear content, and satellite cell content.322

Animal studies have demonstrated that aerobic exercise
increases myofibers that contain higher numbers of satellite
cells in both young and old rats,323 and also promotes ex-
pansion of the satellite cell pool in young and old mice.324

The contribution of these stem cells to skeletal muscle re-
generation has been well documented.325,326 As stated
by Hawke and Garry,326 because adult myofibers are post-
mitotic cells, the regulation of skeletal muscle is dependent
on a small population of resident cells that are the satellite
cells. The regulation of satellite cells involves several
mechanisms, including immune response, neurotransmitters,
neurotrophic and vascular factors (among other growth fac-
tors such as IGF-1327), cytokines such as IL-6,328 testoster-
one, or NO�, most of which are modulated by exercise.111

Not only in young adults329 but also during aging, resis-
tance training is able to induce skeletal muscle satellite cell
proliferation and differentiation, thereby resulting in hy-
pertrophy of type II fibers.330 The latter phenomenon, in
turn, attenuates the pro-sarcopenic physiological events re-
lated to type II fiber atrophy associated with aging,31,318, 322

On the other hand, although resistance training in the elderly
of both sexes can counteract the loss of muscle mass and
strength,331 a recent study reported that satellite cell in-
duction in response to a single bout of resistance exercise is
delayed in old men.332 McKay et al.333 also showed that,
compared to young adults, muscle levels of myostatin, a
protein that inhibits muscle differentiation and growth in the
myogenesis process, were two-fold higher in older indi-
viduals, who also had 35% fewer basal stem cells and a type
II fiber-specific impairment in stem cell content. The authors
concluded that the co-localization of myostatin with satellite

cells explains the worsened myogenic capacity of the aged
skeletal muscle.333 In fact, an aging-blunted activation of
type II muscle fiber satellite cells in response to an acute
bout of resistance exercise was recently shown by Snijders
et al.332 In addition, the satellite cell response to resistance
exercise is related to the extent of muscular hypertrophy
induced by training.334

Altered intercellular communication

Aging is associated with altered intercellular communi-
cation leading to inflammation or ‘‘inflammaging.’’196

Several mechanisms are responsible for this process, in-
cluding accumulation of pro-inflammatory tissue damage,
immune dysfunction, release of pro-inflammatory cytokines
by senescent cells, higher activation of NF-jB, or impaired
autophagy regulation.196,335 These events activate the NOD-
like receptor protein 3 (NLRP3) ‘‘inflammasome,’’ charac-
terized by elevations in IL-1b, tumor necrosis factor-a
(TNF-a), and interferons.335,336 Interestingly, calorie re-
striction and exercise-mediated weight loss in obese indi-
viduals with type 2 diabetes lead to a reduction in adipose
tissue expression of the NLRP3 inflammasome and IL-1b,
and thus to reduced inflammation.337

The decay factor AUF1 (AU-binding factor 1, also known
as heterogeneous nuclear ribonucleoprotein D or hnRNP D)
is implicated in the cessation of the inflammatory response
(by mediating cytokine mRNA degradation) and also in the
maintenance of telomere length by modulating TERT.338

Down-regulation of AUF1 leads to accelerated cellular se-
nescence and premature aging in mice, which is rescued by
normalizing the expression of this factor.196 Lai et al. found
that chronic muscle contractile activity increased different
AUF1 isoforms (p37, p40, and p45) in the muscle of healthy
rats, resulting in improved muscle plasticity in response to
subsequent contractile activity.339 Senescent cells transmit
their condition to other cells through multiple mechanisms,
including ROS, growth factors, and interleukins.340 As
mentioned above, chronic physical exercise (mostly of the
aerobic type) decreases ROS damage, and it does so by
decreasing ROS production at the mitochondrial level while
up-regulating endogenous anti-oxidant defense.121

Importantly, skeletal muscle fibers produce hundreds of
secreted factors or ‘‘myokines’’ (including the above-
mentioned neurotrophins) with a potential drug-like effect at
the local and systemic levels, i.e., proteins, growth factors,
cytokines, or metallopeptidases, and this secretory capacity
increases during and after exercise training (see Fiuza-
Luces252 for an in-depth review and Table 3 for some il-
lustrative examples). Systemic low-level inflammation and
related conditions such as CVD or cancer can be attenuated
by the cumulative effect of regular exercise bouts, during
which the muscle can release IL-6, arguably the myokine
prototype.341 This, in turn, creates a healthy milieu by in-
ducing the production of the anti-inflammatory cytokines
IL-1 receptor antagonist (IL-1Ra), IL-10, or TNF soluble
receptors (sTNF-R) while inhibiting the pro-inflammatory
cytokine TNF-a.341 The release of IL-6 from working
muscles increases with exercise intensity342 and duration,343

and endogenous NO� and the interaction between Ca2 + /
nuclear factor of activated T cell (NFAT) and glycogen/p38
MAPK are the proposed upstream signals leading to its
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secretion.344 Other anti-inflammatory myokines include IL-
4, IL-10, or IL-13.345,346 Thus, life-long aerobic exercise
training is associated with lower inflammation levels.347–349

Higher levels of aerobic exercise have also been associated
with lower levels of C-reactive protein (CRP), IL-6, and
TNF-a in people aged 70–79 years.350 However, although
exercise training is known to have beneficial anti-inflam-
matory effects across a broad spectrum of organs and sys-
tems, more research is needed in the elderly, particularly to
determine if the molecular mechanisms and pathways in-
volved are similar in old people compared with younger
population segments.351

Perspective

The benefits of regular exercise are such that a dose–
response is usually observed in humans. Higher levels of
moderate-to-vigorous exercise ( ‡ 450 min/week, clearly above
the minimum international recommendations of 150 min/
week) are associated with longer life expectancy.352 Further-
more, elite athletes—those humans sustaining the highest
possible exercise levels (e.g., former participants in the Tour
de France cycling race or former Olympic marathoners)—
usually live considerably longer than the general population.353

Physical exercise has a profound effect on the expression
of a substantial proportion of our genome, which has
evolved to optimize aerobic metabolism in an environment
of food scarcity. Thus, physical inactivity is becoming a
major public health problem worldwide.354 Exercise cer-
tainly cannot reverse the aging process, but it does attenuate
many of its deleterious systemic and cellular effects. Most
common age-associated chronic conditions are diseases of
physiology and thus physiological interventions, of which
physical exercise is arguably the best example, are largely
the answer.355 We propose that more research efforts should
be devoted to gain insights into the molecular mediators of
the exercise benefits. Besides putting more anti-aging drugs
on the market, it would be wise to determine which are the
most effective combinations, types, and dosages (frequency,
duration, intensity) of exercise for older people and to im-
plement efficient exercise interventions for this and younger
population segments. Note: For the purposes of simplicity in
this review, we have mostly used the common term ‘‘ex-
ercise’’ instead of ‘‘physical activity.’’
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